Спортивный портал - Aquaclub35

1 из оснований трапеции. Свойства трапеции. Упражнение на внимание

- (греч. trapezion). 1) в геометрии четырехугольник, у которого две стороны параллельны, а две нет. 2) фигура, приспособленная для гимнастических упражнений. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТРАПЕЦИЯ… … Словарь иностранных слов русского языка

Трапеция - Трапеция. ТРАПЕЦИЯ (от греческого trapezion, буквально столик), выпуклый четырехугольник, в котором две стороны параллельны (основания трапеции). Площадь трапеции равна произведению полусуммы оснований (средней линии) на высоту. … Иллюстрированный энциклопедический словарь

Четырехугольник, снаряд, перекладина Словарь русских синонимов. трапеция сущ., кол во синонимов: 3 перекладина (21) … Словарь синонимов

- (от греческого trapezion, буквально столик), выпуклый четырехугольник, в котором две стороны параллельны (основания трапеции). Площадь трапеции равна произведению полусуммы оснований (средней линии) на высоту … Современная энциклопедия

- (от греч. trapezion букв. столик), четырехугольник, в котором две противоположные стороны, называемые основаниями трапеции, параллельны (на рисунке АD и ВС), а другие две непараллельны. Расстояние между основаниями называют высотой трапеции (на… … Большой Энциклопедический словарь

ТРАПЕЦИЯ, четырехугольная плоская фигура, в которой две противоположные стороны параллельны. Площадь трапеции равна полусумме параллельных сторон, умноженной на длину перпендикуляра между ними … Научно-технический энциклопедический словарь

ТРАПЕЦИЯ, трапеции, жен. (от греч. trapeza стол). 1. Четырехугольник с двумя параллельными и двумя непараллельными сторонами (мат.). 2. Гимнастический снаряд, состоящий из перекладины, подвешенной на двух веревках (спорт.). Акробатические… … Толковый словарь Ушакова

ТРАПЕЦИЯ, и, жен. 1. Четырёхугольник с двумя параллельными и двумя непараллельными сторонами. Основания трапеции (её параллельные стороны). 2. Цирковой или гимнастический снаряд перекладина, подвешенная на двух тросах. Толковый словарь Ожегова. С … Толковый словарь Ожегова

Жен., геом. четвероугольник с неравными сторонами, из коих две опостенны (паралельны). Трапецоид, подобный четвероугольник, у которого все стороны идут врознь. Трапецоэдр, тело, ограненное трапециями. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

- (Trapeze), США, 1956, 105 мин. Мелодрама. Начинающий акробат Тино Орсини поступает в цирковую труппу, где работает Майк Риббл, известный в прошлом воздушный гимнаст. Когда то Майк выступал вместе с отцом Тино. Молодой Орсини хочет, чтобы Майк… … Энциклопедия кино

Четырехугольник, две стороны которого параллельны, а дведругие стороны не параллельны. Расстояние между параллельными сторонаминаз. высотою Т. Если параллельные стороны и высота содержат а, b и hметров, то площадь Т. содержит квадратных метров … Энциклопедия Брокгауза и Ефрона

Книги

  • Комплект таблиц. Геометрия. 8 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов. Многоугольники.…
  • Комплект таблиц. Математика. Многоугольники (7 таблиц) , . Учебный альбом из 7 листов. Выпуклые и невыпуклые многоугольники. Четырехугольники. Параллелограмм и трапеция. Признаки и свойства параллелограмма. Прямоугольник. Ромб. Квадрат. Площадь…

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная .

— это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b ),

m, n — боковые стороны трапеции,

d 1 , d 2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h : S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h : S = MN\cdot h
  3. Через диагонали d 1 , d 2 и угол (\sin \varphi ) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции , прилежащих к каждой боковой стороне, равна 180^{\circ} :

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими , то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2} .

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

  1. Отрезок, соединяющий середины диагоналей трапеции равен половине разности оснований
  2. Треугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения - подобны
  3. Треугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции - равновеликие (имеют одинаковую площадь)
  4. Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины оснований
  5. Отрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапеции
  6. Отрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b - основания трапеции

Свойства отрезка, соединяющего середины диагоналей трапеции

Соединим середины диагоналей трапеции ABCD, в результате чего у нас появится отрезок LM.
Отрезок, соединяющий середины диагоналей трапеции, лежит на средней линии трапеции .

Данный отрезок параллелен основаниям трапеции .

Длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований.

LM = (AD - BC)/2
или
LM = (a-b)/2

Свойства треугольников, образованных диагоналями трапеции


Треугольники, которые образованы основаниями трапеции и точкой пересечения диагоналей трапеции - являются подобными .
Треугольники BOC и AOD являются подобными. Поскольку углы BOC и AOD являются вертикальными - они равны.
Углы OCB и OAD являются внутренними накрест лежащими при параллельных прямых AD и BC (основания трапеции параллельны между собой) и секущей прямой AC, следовательно, они равны.
Углы OBC и ODA равны по той же самой причине (внутренние накрест лежащие).

Так как все три угла одного треугольника равны соответствующим углам другого треугольника, то данные треугольники подобны.

Что из этого следует?

Для решения задач по геометрии подобие треугольников используется следующим образом. Если нам известны значения длин двух соответствующих элементов подобных треугольников, то мы находим коэффициент подобия (делим одно на другое). Откуда длины всех остальных элементов соотносятся между собой точно таким же значением.

Свойства треугольников, лежащих на боковой стороне и диагоналях трапеции


Рассмотрим два треугольника, лежащих на боковых сторонах трапеции AB и CD. Это - треугольники AOB и COD. Несмотря на то, что размеры отдельных сторон у данных треугольников могут быть совершенно различны, но площади треугольников, образованных боковыми сторонами и точкой пересечения диагоналей трапеции равны , то есть треугольники являются равновеликими.

Если продлить стороны трапеции в сторону меньшего основания, то точка пересечения сторон будет совпадать с прямой линией, которая проходит через середины оснований .

Таким образом, любая трапеция может быть достроена до треугольника. При этом:

  • Треугольники, образованные основаниями трапеции с общей вершиной в точке пересечения продленных боковых сторон являются подобными
  • Прямая, соединяющая середины оснований трапеции, является, одновременно, медианой построенного треугольника

Свойства отрезка, соединяющего основания трапеции

Если провести отрезок, концы которого лежат на основаниях трапеции, который лежит на точке пересечения диагоналей трапеции (KN), то соотношенее составляющих его отрезков от стороны основания до точки пересечения диагоналей (KO/ON) будет равно соотношению оснований трапеции (BC/AD).

KO / ON = BC / AD

Данное свойство следует из подобия соответствующих треугольников (см. выше).

Свойства отрезка, параллельного основаниям трапеции


Если провести отрезок, параллельный основаниям трапеции и проходящий через точку пересечения диагоналей трапеции, то он будет обладать следующими свойствами:

  • Заданный отрезок (KM) делится точкой пересечения диагоналей трапеции пополам
  • Длина отрезка , проходящего через точку пересечения диагоналей трапеции и параллельного основаниям, равна KM = 2ab/(a + b)

Формулы для нахождения диагоналей трапеции


a, b - основания трапеции

c, d - боковые стороны трапеции

d1 d2 - диагонали трапеции

α β - углы при большем основании трапеции

Формулы нахождения диагоналей трапеции через основания, боковые стороны и углы при основании

Первая группа формул (1-3) отражает одно из основных свойств диагоналей трапеции:

1. Сумма квадратов диагоналей трапеции равна сумме квадратов боковых сторон плюс удвоенное произведение ее оснований . Данное свойство диагоналей трапеции может быть доказано как отдельная теорема

2 . Данная формула получена путем преобразования предыдущей формулы. Квадрат второй диагонали переброшен через знак равенства, после чего из левой и правой части выражения извлечен квадратный корень.

3 . Эта формула нахождения длины диагонали трапеции аналогична предыдущей, с той разницей, что в левой части выражения оставлена другая диагональ

Следующая группа формул (4-5) аналогична по смыслу и выражает аналогичное соотношение.

Группа формул (6-7) позволяет найти диагональ трапеции, если известны большее основание трапеции, одна боковая сторона и угол при основании.

Формулы нахождения диагоналей трапеции через высоту



Примечание . В данном уроке приведено решение задач по геометрии о трапециях. Если Вы не нашли решение задачи по геометрии, интересующего Вас типа - задайте вопрос на форуме .

Задача .
Диагонали трапеции ABCD (AD | | ВС) пересекаются в точке О. Найдите длину основания ВС трапеции, если основание АD = 24 см, длина АО = 9см, длина ОС = 6 см.

Решение .
Решение данной задачи по идеологии абсолютно идентично предыдущим задачам.

Треугольники AOD и BOC являются подобными по трем углам - AOD и BOC являются вертикальными, а остальные углы попарно равны, поскольку образованы пересечением одной прямой и двух параллельных прямых.

Поскольку треугольники подобны, то все их геометрические размеры относятся между собой, как геометрически размеры известных нам по условию задачи отрезков AO и OC. То есть

AO / OC = AD / BC
9 / 6 = 24 / BC
BC = 24 * 6 / 9 = 16

Ответ : 16 см

Задача .
В трапеции ABCD известно, что AD=24, ВС=8, АС=13, BD=5√17. Найдите площадь трапеции.

Решение .
Для нахождения высоты трапеции из вершин меньшего основания B и C опустим на большее основание две высоты. Поскольку трапеция неравнобокая - то обозначим длину AM = a, длину KD = b (не путать с обозначениями в формуле нахождения площади трапеции). Поскольку основания трапеции параллельны, а мы опускали две высоты, перпендикулярных большему основанию, то MBCK - прямоугольник.

Значит
AD = AM+BC+KD
a + 8 + b = 24
a = 16 - b

Треугольники DBM и ACK - прямоугольные, так их прямые углы образованы высотами трапеции. Обозначим высоту трапеции через h. Тогда по теореме Пифагора

H 2 + (24 - a) 2 = (5√17) 2
и
h 2 + (24 - b) 2 = 13 2

Учтем, что a = 16 - b , тогда в первом уравнении
h 2 + (24 - 16 + b) 2 = 425
h 2 = 425 - (8 + b) 2

Подставим значение квадрата высоты во второе уравнение, полученное по Теореме Пифагора. Получим:
425 - (8 + b) 2 + (24 - b) 2 = 169
-(64 + 16b + b) 2 + (24 - b) 2 = -256
-64 - 16b - b 2 + 576 - 48b + b 2 = -256
-64b = -768
b = 12

Таким образом, KD = 12
Откуда
h 2 = 425 - (8 + b) 2 = 425 - (8 + 12) 2 = 25
h = 5

Найдем площадь трапеции через ее высоту и полусумму оснований
, где a b - основания трапеции, h - высота трапеции
S = (24 + 8) * 5 / 2 = 80 см 2

Ответ : площадь трапеции равна 80 см 2 .


Раздел содержит задачи по геометрии (раздел планиметрия) о трапециях. Если Вы не нашли решения задачи - пишите об этом на форуме. Курс наверняка будет дополнен.

Трапеция. Определение, формулы и свойства

Трапе́ция (от др.-греч. τραπέζιον - «столик»; τράπεζα - «стол, еда») - четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.

Трапеция - четырёхугольник, у которого пара противолежащих сторон параллельна.

Примечание. В этом случае параллелограмм является частным случаем трапеции.

Параллельные противоположные стороны называются основаниями трапеции, а две другие - боковыми сторонами.

Трапеции бывают:

- разносторонние ;

- равнобокие ;

- прямоугольные

.
Красным и коричневым цветами обозначены боковые стороны, зеленым и синим - основания трапеции.

A - равнобокая (равнобедренная, равнобочная) трапеция
B - прямоугольная трапеция
C - разносторонняя трапеция

У разносторонней трапеции все стороны разной длины, а основания параллельны.

У боковые стороны равны, а основания параллельны.

У основания параллельны, одна боковая сторона перпендикулярна основаниям, а вторая боковая сторона - наклонная к основаниям.

Свойства трапеции

  • Средняя линия трапеции параллельна основаниям и равна их полусумме
  • Отрезок, соединяющий середины диагоналей , равен половине разности оснований и лежит на средней линии. Его длина
  • Параллельные прямые, пересекающие стороны любого угла трапеции, отсекают от сторон угла пропорциональные отрезки (см. Теорему Фалеса)
  • Точка пересечения диагоналей трапеции , точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой (см. также свойства четырехугольника)
  • Треугольники, лежащие на основаниях трапеции, вершины которых являются точкой пересечения ее диагоналей являются подобными. Соотношение площадей таких треугольников равно квадрату соотношения оснований трапеции
  • Треугольники, лежащие на боковых сторонах трапеции, вершины которых являются точкой пересечения ее диагоналей являются равновеликими (равными по площади)
  • В трапецию можно вписать окружность , если сумма длин оснований трапеции равна сумме длин её боковых сторон. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований)
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен удвоенному произведению оснований, деленному на их сумму 2ab / (a +b) (Формула Буракова)

Углы трапеции

Углы трапеции бывают острые, прямые и тупые .
Прямыми бывают только два угла.

У прямоугольной трапеции два угла прямые , а два других – острый и тупой. У других видов трапеций бывают: два острых угла и два тупых.

Тупые углы трапеции принадлежат меньшему по длине основанию, а острые – большему основанию.

Любую трапецию можно рассматривать как усеченный треугольник , у которого линия сечения параллельна основанию треугольника.
Важно . Обратите внимание, что таким способом (дополнительным построением трапеции до треугольника) могут решаться некоторые задачи про трапецию и доказываются некоторые теоремы.

Как найти стороны и диагонали трапеции

Нахождение сторон и диагоналей трапеции делают с помощью формул, которые приведены ниже:


В указанных формулах применяются обозначения, как на рисунке.

a - меньшее из оснований трапеции
b - большее из оснований трапеции
c,d - боковые стороны
h 1 h 2 - диагонали


Сумма квадратов диагоналей трапеции равна удвоенному произведению оснований трапеции плюс сумма квадратов боковых сторон (Формула 2)

ФГКОУ «МКК «Пансион воспитанниц МО РФ»

«УТВЕРЖДАЮ»

Руководитель отдельной дисциплины

(математика, информатика и ИКТ)

Ю. В. Крылова _____________

«___» _____________ 2015 г.

«Трапеция и ее свойства »

Методическая разработка

преподавателя математики

Шаталиной Елены Дмитриевны

Рассмотрено и

на заседании ПМО от _______________

Протокол №______

Москва

2015 год

Оглавление

Введение 2

    Определения 3

    Свойства равнобедренной трапеции 4

    Вписанные и описанные окружности 7

    Свойства вписанных и описанных трапеций 8

    Средние величины в трапеции 12

    Свойства произвольной трапеции 15

    Признаки трапеции 18

    Дополнительные построения в трапеции 20

    Площадь трапеции 25

10. Заключение

Список используемой литературы

Приложение

    Доказательства некоторых свойств трапеции 27

    Задачи для самостоятельных работ

    Задачи по теме «Трапеция» повышенной сложности

    Проверочный тест по теме «Трапеция»

Введение

Данная работа посвящена геометрической фигуре, которая называется трапеция. «Обычная фигура»,- скажете вы, но это не так. Она таит в себе много тайн и загадок, если приглядеться и углубиться в ее изучение, то вы откроете для себя много нового в мире геометрии, задачи, которые раньше не решались, покажутся вам легкими.

Трапеция - греч.слово trapezion – «столик». Заимств. в 18 в. из лат. яз., где trapezion – греч. Это четырехугольник, у которого две противоположные стороны параллельны. Трапеция встречается впервые у древнегреческого ученого Посидония (2 век до н.э.). В нашей жизни много разных фигур. В 7 классе мы близко познакомились с треугольником, в 8 классе по школьной программе мы начали изучать трапецию. Эта фигура заинтересовала нас, а в учебнике непозволимо мало про нее написано. Поэтому мы решили взять это дело в руки и найти информацию про трапецию. ее свойства.

В работе рассматриваются свойства знакомые воспитанницам по пройденному материалу в учебнике, но в большей степени неизвестные свойства, которые необходимы для решения сложных задач. Чем больше количество решаемых задач, тем больше вопросов возникает при решении их. Ответом на эти вопросы иногда кажется тайной, узнавая, новые свойства трапеции, необычные приемы решения задач, а также технику дополнительных построений, мы постепенно открываем тайны трапеции. В интернете, если забить в поисковике, о методах решения задач по теме «трапеция» очень мало литературы. В процессе работы над проектом найден большой объем информации, которая поможет воспитанницам в глубоком изучении геометрии.

Трапеция.

    Определения

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две - боковые стороны .
Если боковые стороны равны, трапеция называется
равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Расстояние между основаниями называется высотой трапеции .

2 . Свойства равнобедренной трапеции



3. Диагонали равнобедренной трапеции равны.

4



1
0. Проекция боковой стороны равнобедренной трапеции на большее основание равна полуразности оснований, а проекция диагонали равна помусумме оснований.



3. Вписанная и описанная окружность

Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность.

Е
сли трапеция равнобедренная, то около неё можно описать окружность.

4 . Свойства вписанных и описанных трапеций


2.Если в равнобедренную трапецию можно вписать окружность, то


сумма длин оснований равна сумме длин боковых сторон. Следовательно, длина боковой стороны равна длине средней линии трапеции.

4 . Если в трапецию вписана окружность, то боковые стороны из ее центра видны под углом 90°.



    Е сли в трапецию вписана окружность, которая касается одной из боковых сторон, разбивает ее на отрезки m и n, тогда радиус вписанной окружности равен среднему геометрическому этих отрезков.


1

0
. Если окружность построена на меньшем основании трапеции как на диаметре, проходит через середины диагоналей и касается нижнего основания, то углы трапеции 30°, 30°, 150°, 150°.






5. Средние величины в трапеции

Среднее геометрическое






    В любой трапеции с основаниями a и b для a > b справедливо неравенство :



b ˂ h ˂ g ˂ m ˂ s ˂ a

6. Свойства произвольной трапеции

1
. Середины диагоналей трапеции и середины боковых сторон лежат на одной прямой.



2. Биссектрисы углов, прилежащих к одной из боковых сторон трапеции, перпендикулярны и пересекаются в точке, лежащей на средней линии трапеции, т.е., при их пересечении образуется прямоугольный треугольник с гипотенузой, равной боковой стороне.



3. Отрезки прямой, параллельной основаниям трапеции, пересекающей боковые стороны и диагонали трапеции, заключенные между боковой стороной диагональю, равны.

    Точка пересечения продолжения боковых сторон произвольной трапеции, точка пересечения ее диагоналей и середин оснований лежат на одной прямой.



5. При пересечении диагоналей произвольной трапеции образуются четыре треугольника с общей вершиной, причем треугольники, прилежащие к основаниям, подобны, а треугольники, прилежащие к боковым сторонам, равновелики(т.е. имеют равные площади).

6. Сумма квадратов диагоналей произвольной трапеции равна сумме квадратов боковых сторон, сложенной с удвоенным произведением оснований.


d 1 2 + d 2 2 = c 2 + d 2 + 2 ab

7
. В прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований d 1 2 - d 2 2 = a 2 b 2

8 . Прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.


9. Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам.

7 . Признаки трапеции


8 . Дополнительные построения в трапеции

1. Отрезок, соединяющий середины боковых сторон - средняя линия трапеции.

2
. Отрезок, параллельный одной из боковых сторон трапеции, один конец которого совпадает с серединой другой боковой стороны, другой принадлежит прямой, содержащей основание.

3
. Если даны все стороны трапеции, через вершину меньшего основания проводится прямая, параллельная боковой стороне. Получается треугольник со сторонами, равными боковым сторонам трапеции и разности оснований. По формуле Герона находят площадь треугольника, потом высоту треугольника, которая равна высоте трапеции.

4

. Высота равнобедренной трапеции, проведенная из вершины меньшего основания, разбивает большее основание на отрезки, один из которых равен полуразности оснований, а другой полусумме оснований трапеции, т. е. средней линии трапеции.

5. Высоты трапеции, опущенные из вершин одного основания, высекают на прямой, содержащей другое основание, отрезок, равный первому основанию.

6
. Отрезок, параллельный одной из диагоналей трапеции проводится через вершину – точку, являющуюся концом другой диагонали. В результате получается треугольник с двумя сторонами, равными диагоналям трапеции, и третьей – равной сумме оснований


7
.Отрезок, соединяющий середины диагоналей, равен полуразности оснований трапеции.

8. Биссектрисы углов, прилежащих к одной из боковых сторон трапеции, они перпендикулярны и пересекаются в точке, лежащей на средней линии трапеции, т.е., при их пересечении образуется прямоугольный треугольник с гипотенузой, равной боковой стороне.

9. Биссектриса угла трапеции отсекает равнобедренный треугольник.


1
0. Диагонали произвольной трапеции при пересечении образуют два подобных треугольника с коэффициентом подобия, равным отношению оснований, и два равновеликих треугольника, прилежащих к боковым сторонам.

1
1. Диагонали произвольной трапеции при пересечении образуют два подобных треугольника с коэффициентом подобия, равным отношению оснований, и два равновеликих треугольника, прилежащих к боковым сторонам.

1
2 . Продолжение боковых сторон трапеции до пересечения дает возможность рассматривать подобные треугольники.

13. Если в равнобедренную трапецию вписана окружность, то проводят высоту трапеции - среднее геометрическое произведения оснований трапеции или удвоенное среднее геометрическое произведения отрезков боковой стороны, на которые она делится точкой касания.


9. Площадь трапеции

1 . Площадь трапеции равна произведению полусуммы оснований на высоту S = ½(a + b ) h или

П

лощадь трапеции равна произведению средней линии трапеции на высоту S = m h .

2. Площадь трапеции равна произведению боковой стороны и перпендикуляра, проведенного из середины другой боковой стороны к прямой, содержащей первую боковую сторону.


    Площадь равнобедренной трапеции с радиусом вписанной окружности равным r и углом при основании α:

10. Заключение

ГДЕ, КАК И ДЛЯ ЧЕГО ИСПОЛЬЗЕУТСЯ ТРАПЕЦИЯ?

Трапеция в спорте: Трапеция - безусловно прогрессивное изобретение человечества. Она предназначена для того, чтобы разгрузить наши руки, сделать хождение на виндсерфере комфортным и легким отдыхом. Хождение на короткой доске вообще не имеет смысла без трапеции, так как без нее невозможно правильно распределить тягу между степсом и ногами и эффективно разогнаться.

Трапеция в моде: Трапеция в одежде была популярна ещё в средние века, в романскую эпоху IX-XI вв. В тот период основу женской одежды составляли туники в пол, к низу туника сильно расширялась, что и создавало эффект трапеции. Возрождение силуэта произошло в 1961-ом году и стало гимном молодости, независимости и утонченности. Огромную роль в популяризации трапеции сыграла хрупкая модель Лесли Хорнби, известная, как Твигги. Невысокая девочка с анорексичным телосложением и огромными глазами стала символом эпохи, а её излюбленными нарядами были короткие платья трапеции.

Трапеция в природе: трапеция встречается и в природе. У человека есть трапециевидная мышца, у некоторых людей лицо имеет форму трапеции. Лепестки цветов, созвездия, и конечно же вулкан Килиманджаро тоже имеют форму трапеции.

Трапеция в быту: Трапеция используется и в быту, т.к ее форма практична. Она встречается в таких предметах как: ковш экскаватора, стол, винт, машина.

Трапеция - символ архитектуры инков. Доминирующая стилистическая форма в архитектуре инков проста, но изящна - это трапеция. Она имеет не только функциональное значение, но и строго ограниченное художественное оформление. Трапециевидные дверные проемы, окна, и стенные ниши найдены в постройках всех типов, и в храмах и в менее значительных зданиях более грубых, если можно так выразиться, постройках. Трапеция встречается и в современной архитектуре. Эта форма зданий является необычной, поэтому такие постройки всегда притягивают взгляды прохожих.

Трапеция в технике: Трапеция используется при конструировании деталей в космических технологиях и в авиации. Например, некоторые солнечные батареи космических станций имеют форму трапеции так как имеют большую площадь, значит накапливают больше солнечной эн

В 21 первом веке люди уже практически не задумываются о значении геометрических фигур в их жизни. Их совершенно не волнует какой формы у них стол, очки или телефон. Они просто выбирают ту форму, которая практична. Но именно от формы той или иной вещи может зависеть использование предмета, его предназначение, результат работы. Сегодня мы познакомили вас с одной из величайших достижений человечества- с трапецией. Мы приоткрыли вам дверь в удивительный мир фигур, поведали вам тайны трапеции и показали, что геометрия вокруг нас.

Список используемой литературы

    Болотов А.А., Прохоренко В.И., Сафонов В.Ф., Математика Теория и Задачи. Книга 1 Учебное пособие для абитуриентов М.1998 Издательство МЭИ.

    Быков А.А, Малышев Г.Ю., ГУВШ факультет довузовской подготовки. Математика. Учебно-методическое пособие 4 часть М2004

    Гордин Р.К. Планиметрия. Задачник.

    Иванов А.А.,. Иванов А.П, Математика: Пособие для подготовки к ЕГЕ и поступлению в вузы-М: Издательство МФТИ,2003-288с. ISBN 5-89155-188-3

    Пиголкина Т.С, Министерство образования и науки РФ федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «ЗФТШ Московского физико-технического института (государственного университета)». Математика. Планиметрия. Задания №2 для 10-ых классов (2012-2013 учебный год).

    Пиголкина Т.С., Планиметрия (часть1).Матиматическая Энциклопедия Абитуриента. М., издательство российского открытого университета 1992.

    Шарыгин И.Ф.Избранные задачи по геометрии конкурсных экзаменов в ВУЗЫ (1987-1990) Львов Журнал «Квантор» 1991.

    Энциклопедия «Аванта плюс», Математика М., Мир энциклопедий Аванта 2009.

Приложение

1.Доказательство некоторых свойств трапеции.

1. Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках K и L . Доказать, что если основания трапеции равны а и b , то длина отрезка KL равна среднему геометрическому оснований трапеции. Доказательство

Пусть О - точка пересечения диагоналей, AD = а, ВС = b . Пря­мая KL параллельна основанию AD , следовательно, K О AD , треугольники В K О и BAD подобны, поэтому


(1)

(2)

Подставим (2) в (1) , получим KO =

Аналогично LO = Тогда K L = KO + LO =

    В о всякой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжения боковых сторон ле­жат на одной прямой.

    Доказательство: Пусть продолжения боковых сторон пересекаются в точке К. Через точку К и точку О пересечения диагоналей проведём прямую КО.

K

Окажем, что эта прямая делит основания пополам.

Обозначим ВМ = х, МС = у, AN = и, ND = v . Имеем:

ВКМ ~ ∆AKN

M

x

B

C

Y

C ~ ∆NKD

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении